skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hall, Robert O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Concentrations of total dissolved inorganic carbon (DIC) in freshwater ecosystems are controlled by terrestrial inputs and a myriad of in situ processes, such as aquatic metabolism. Dissolved CO2is one of the components of DIC, and its dynamics are also regulated by chemical equilibrium with the DIC pool, so‐called carbonate buffering. Although its importance is generally recognized, carbonate buffering is still not consistently accounted for in freshwater studies. Here, we review key concepts in freshwater carbonate buffering, perform simulation experiments, and provide a case study of an alkaline river to illustrate calculations of DIC from CO2. These analyses demonstrate that carbonate buffering can alter common interpretations of CO2data, including carbon–oxygen coupling through production and respiration. As direct measurements of dissolved CO2are increasingly common, accounting for CO2equilibria with DIC is critical to understanding its role in carbon cycling within most freshwater systems. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026
  2. Abstract Rivers efficiently collect, process, and transport terrestrial‐derived carbon. River ecosystem metabolism is the primary mechanism for processing carbon. Diel cycles of dissolved oxygen (DO) have been used for decades to infer river ecosystem metabolic rates, which are routinely used to predict metabolism of carbon dioxide (CO2) with uncertainties of the assumed stoichiometry ranging by a factor of 4. Dissolved inorganic carbon (DIC) has been less used to directly infer metabolism because it is more difficult to quantify, involves the complexity of inorganic carbon speciation, and as shown in this study, likely requires a two‐station approach. Here, we developed DIC metabolism models using single‐ and two‐station approaches. We compared metabolism estimates based on simultaneous DO and DIC monitoring in the Upper Clark Fork River (USA), which also allowed us to estimate ecosystem‐level photosynthetic and respiratory quotients (PQEand RQE). We observed that metabolism estimates from DIC varied more between single‐ and two‐station approaches than estimates from DO. Due to carbonate buffering, CO2is slower to equilibrate with the atmosphere compared to DO, likely incorporating a longer distance of upstream heterogeneity. Reach‐averaged PQEranged from 1.5 to 2.0, while RQEranged from 0.8 to 1.5. Gross primary production from DO was larger than that from DIC, as was net ecosystem production by . The river was autotrophic based on DO but heterotrophic based on DIC, complicating our understanding of how metabolism regulated CO2production. We suggest future studies simultaneously model metabolism from DO and DIC to understand carbon processing in rivers. 
    more » « less
  3. This dataset contains estimates of gas exchange velocity, gas exchange rate, and hydraulic parameters for streams calculated from tracer-gas experiments and conservative tracer injections collected by the National Ecological Observatory Network (NEON). All input data were collected by NEON and is available on the NEON data portal at https://data.neonscience.org. Specifically, the NEON Reaeration field and lab collection data product (DP1.20190.001) was used to calculate these estimates. Gas exchange was estimated in two ways: first, following an unpooled frequentist approach and second, following a partially pooled Bayesian approach. In addition, a salt-correction was applied to gas exchange estimates for sites where it was possible and necessary. All estimates of gas exchange are included in the file gasExchange_ds.csv. A recommended selection of these estimates is included in the dataset (best_k600_mPerDay and best_K600_mPerDay). The stanfit objects used for the partially pooled Bayesian approach are also included as site-specific model objects for gas exchange velocities and rates. In addition, water velocity was calculated from conservative tracer injections, and mean water depth was calculated from these water velocity estimates and measurements of wetted width and water discharge. All hydraulic parameters are included in the file hydraulics_ds.csv. All processing code is available in the reaRates R package. NEON is sponsored by the National Science Foundation (NSF) and operated under cooperative agreement by Battelle. This material is based in part upon work supported by NSF through the NEON Program. 
    more » « less
  4. Considerable attention is given to absolute nutrient levels in lakes, rivers, and oceans, but less is paid to their relative concentrations, their nitrogen:phosphorus (N:P) stoichiometry, and the consequences of imbalanced stoichiometry. Here, we report 38 y of nutrient dynamics in Flathead Lake, a large oligotrophic lake in Montana, and its inflows. While nutrient levels were low, the lake had sustained high total N: total P ratios (TN:TP: 60 to 90:1 molar) throughout the observation period. N and P loading to the lake as well as loading N:P ratios varied considerably among years but showed no systematic long-term trend. Surprisingly, TN:TP ratios in river inflows were consistently lower than in the lake, suggesting that forms of P in riverine loading are removed preferentially to N. In-lake processes, such as differential sedimentation of P relative to N or accumulation of fixed N in excess of denitrification, likely also operate to maintain the lake’s high TN:TP ratios. Regardless of causes, the lake’s stoichiometric imbalance is manifested in P limitation of phytoplankton growth during early and midsummer, resulting in high C:P and N:P ratios in suspended particulate matter that propagate P limitation to zooplankton. Finally, the lake’s imbalanced N:P stoichiometry appears to raise the potential for aerobic methane production via metabolism of phosphonate compounds by P-limited microbes. These data highlight the importance of not only absolute N and P levels in aquatic ecosystems, but also their stoichiometric balance, and they call attention to potential management implications of high N:P ratios. 
    more » « less
  5. Mean annual temperature and mean annual precipitation drive much of the variation in productivity across Earth's terrestrial ecosystems but do not explain variation in gross primary productivity (GPP) or ecosystem respiration (ER) in flowing waters. We document substantial variation in the magnitude and seasonality of GPP and ER across 222 US rivers. In contrast to their terrestrial counterparts, most river ecosystems respire far more carbon than they fix and have less pronounced and consistent seasonality in their metabolic rates. We find that variation in annual solar energy inputs and stability of flows are the primary drivers of GPP and ER across rivers. A classification schema based on these drivers advances river science and informs management. 
    more » « less
  6. Abstract The relationship between detritivore diversity and decomposition can provide information on how biogeochemical cycles are affected by ongoing rates of extinction, but such evidence has come mostly from local studies and microcosm experiments. We conducted a globally distributed experiment (38 streams across 23 countries in 6 continents) using standardised methods to test the hypothesis that detritivore diversity enhances litter decomposition in streams, to establish the role of other characteristics of detritivore assemblages (abundance, biomass and body size), and to determine how patterns vary across realms, biomes and climates. We observed a positive relationship between diversity and decomposition, strongest in tropical areas, and a key role of abundance and biomass at higher latitudes. Our results suggest that litter decomposition might be altered by detritivore extinctions, particularly in tropical areas, where detritivore diversity is already relatively low and some environmental stressors particularly prevalent. 
    more » « less